Cloud Feature PrincipalDirection
Plugin : SimpleForestNom de classe : SF_StepPrincipalDirection
Description
Cloud Feature PrincipalDirection - This step computes the principal direction for each point of a cloud. First the normals of the downscaled input cloud's points are computed. Then the principal component based. on that normals is calculated. The output is color coded.
Paramètres
Paramètres de pré-configuration (non modifiables une fois l'étape ajoutée) :
First to enable multithreading, the point cloud is clustered with voxelization.
.
Then this step computes the principal direction, e.g. the second normal derivate, for a point cloud.
The output is stored color coded on the backscaled cloud.
Please excuse potential double citation with the step related citation for the
following general citation for SimpleForest (work on updated citable resource ongoing):
A majority of implementations are based on PCL library:
------------------------------------------------------------------------------
For this step please cite in addition:
- Uncheck to deactivate parameterization possibilities of this step. Only recommended for beginners: Activé.
First to enable multithreading, the point cloud is clustered with voxelization.
- A voxelization with [voxel size]: 3.00 (m) sized voxels divides the cloud in n clusters..
.
- Then the cloud is downscaled with [voxelGridCluster cell size]: 0.020 (m)..
Then this step computes the principal direction, e.g. the second normal derivate, for a point cloud.
- The [normal radius]: 0.07 (m)..
Used for the normal computation. - The [principal direction radius]: 0.15 (m)..
Used for the principal curvature computation.
The output is stored color coded on the backscaled cloud.
Please excuse potential double citation with the step related citation for the
following general citation for SimpleForest (work on updated citable resource ongoing):
A majority of implementations are based on PCL library:
------------------------------------------------------------------------------
For this step please cite in addition:
Données d'entrée
Structure des données d'entrée recherchées :
Result : Point Cloud
...
Point Group (Group)
Point Cloud (Item with points)
Result : Point Cloud
...
Point Group (Group)
Point Cloud (Item with points)
Références
Hackenberg Jan, Spiecker Heinrich, Calders Kim, Disney Mathias, Raumonen Pasi. 2015. SimpleTree - an efficient open source tool to build tree models from TLS clouds. Multidisciplinary Digital Publishing Institute. Forests.
Rusu Radu Bogdan, Cousins Steve. 2011. 3d is here: Point cloud library (pcl). IEEE. Robotics and Automation (ICRA), 2011 IEEE International Conference on.
Raumonen Pasi, Kaasalainen Mikko, Akerblom Markku, Kaasalainen Sanna, Kaartinen Harri, Vastaranta Mikko, Holopainen Markus, Disney Mathias, Lewis Philip. 2013. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. MDPI. Remote Sensing.
Rusu Radu Bogdan, Cousins Steve. 2011. 3d is here: Point cloud library (pcl). IEEE. Robotics and Automation (ICRA), 2011 IEEE International Conference on.
Raumonen Pasi, Kaasalainen Mikko, Akerblom Markku, Kaasalainen Sanna, Kaartinen Harri, Vastaranta Mikko, Holopainen Markus, Disney Mathias, Lewis Philip. 2013. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. MDPI. Remote Sensing.