Computree Documentation

Euclidean Clustering Filter

Plugin : SimpleForest
Nom de classe : SF_StepEuclideanClusteringFilter

Description

Euclidean clustering filter - This filter clusters an input cloud with a user given clustering range. Only a user specified number of clusters containing more than min and less than max points are merged into one output, the other points are considered noise.

Paramètres

Paramètres de pré-configuration (non modifiables une fois l'étape ajoutée) :

  • Uncheck to deactivate parameterization possibilities of this step. Only recommended for beginners: Activé.

Paramètres de l'étape :

  • First the cloud is downscaled to a [voxel size] of 0.020 (m). .

  • Then an euclidean clustering routine is performed with a [range] of 0.050 (m)..

  • A good cluster has to contain more than [minimum percentage] 0.000 ..

  • A good cluster has to contain less than [maximum percentage] 100.000 ..

  • A good cluster has to have a larger extension than [minimum extension] 0.015 (m)..

  • Only the first [n]: 1 largest clusters are merged into the output..


Please excuse potential double citation with the step related citation for the

following general citation for SimpleForest (work on updated citable resource ongoing):





A majority of implementations are based on PCL library:





------------------------------------------------------------------------------

Données d'entrée

Structure des données d'entrée recherchées :

Result : Point Cloud
    ...
        Group to be denoised (Group)
            Cloud to be denoised (Item with points)

Références

Hackenberg Jan, Spiecker Heinrich, Calders Kim, Disney Mathias, Raumonen Pasi. 2015. SimpleTree - an efficient open source tool to build tree models from TLS clouds. Multidisciplinary Digital Publishing Institute. Forests.
Rusu Radu Bogdan, Cousins Steve. 2011. 3d is here: Point cloud library (pcl). IEEE. Robotics and Automation (ICRA), 2011 IEEE International Conference on.