HT5 - Mesurer des diamètres à 1,30 m de façon automatique

en_US.png ...english version of this page

Ce tutoriel utilise le script suivant dans le sous-dossier **HowTo** de **Computree** : *HT5_Measuring_DBH_automatically.xsct2*

Objectifs du tutoriel

Ce tutoriel montre comment :

- 1. Détecter de manière automatique les tiges, les positions et le diamètre à hauteur de poitrine (DHP) d'arbres à partir de nuages de points LiDAR terrestre
- 2. Comprendre et configurer les paramètres des étapes CompuTree
- 3. Exporter les résultats sous forme d'attributs dans un fichier .csv

Chargement des nuages de points

Veuillez vous référer au tutoriel <u>HT1 - Charger, visualiser, découper et exporter un nuage de points T-Lidar</u> à la section <u>Chargement</u> <u>d'un nuage de points</u>.

Pour de meilleurs résultats, utilisez des scans multiples. La détection des tiges est hautement dépendante de la qualité des données. On cherche donc à maximiser la représentation des objets sur le terrain et à minimiser l'occlusion.

Extraction d'un sous-nuage (facultatif)

Veuillez vous référer au tutoriel <u>HT1 - Charger, visualiser, découper et exporter un nuage de points T-Lidar</u> à la section <u>Extraction</u> <u>d'un sous-nuage</u>.

Réduction de la densité de points (facultatif)

L'étape PB_StepReducePointsDensity¹ est issue du plugin base (base / Nuages de points / Réduction de la densité de points)

Si vous utilisez des scans multiples, il est recommendé d'ajouter une étape permettant de réduire la densité de points afin de réduire les temps de calcul. Selon la puissance de votre ordinateur, une **Résolution** de 0.5 ou 1 cm devrait est être suffisante.

Plus la résolution est fine (nombre de points par centimètre cube élevé), plus les temps de calcul seront élevés.

Configuration (PB_St	epReducePo	ointsDensity (102))	R.	0
Résolution de la grille :	1.000	cm		
		ОК	Cance	el

Séparation des points sol / végétation

Veuillez vous référer au tutoriel HT2 - Créer un Modèle Numérique de Terrain à partir d'un nuage de points T-Lidar.

Création de clusters par tranches horizontales

L'étape OE_StepHorizontalClustering04 est issue du plugin onfensamv2 (onfensamv2 / Clustering / tranches horizontales)

Assurez-vous que le modèle d'entrée est bien <u>Points végétation</u>! Pour accéder à la fenêtre de configuration des résultats d'entrée, faire un clic droit sur l'étape, puis sélectionnez <u>Config. résultats d'entrée</u>

Nom des résultats	Description	Etape	Tour 1 +	
Scène(s)	Scène(s)			
Points végétation	Points végétation	OE_StepExtractSoil03 (91)	Nom des résultats Etape	
Points sol	Points sol	OE_StepExtractSoil03 (91)	Scène(s)	
			Points végétation OE_StepExt	ractSoil03 (91)
			Sortie de OE StenExtractSoil03 (01)	Sélection Entrée
			Points végétation	Selection Entree
			/ qv	1
			Scène végétation	1

Cette étape permet d'aggréger les points en petits groupes (clusters). La scène est d'abord découpée en tranches horizontales de l' Épaisseur choisie. Puis, pour chacune des tranches, les points sont aggrégés selon leur espacement en (X,Y). La **Distance** maximale séparant deux points d'un même groupe est spécifiée en paramètre.

Configuration (OE_StepHorizontalClustering04 (92	2)) ?	23
Distance maximum pour intégrer un point à un groupe :	3	cm
Epaisseur des tranches horizontales :	2	¢ cm
ОК	Car	ncel

Résultat de l'étape de création des clusters:

Chaque couleur représente ici un cluster.

Filtrage des clusters

L'étape OE_StepFilterClustersBySize est issue du plugin onfensamv2 (onfensamv2 / Filtrage de clusters / nb. de points)

Cette étape filtre les clusters selon un **Nombre de points minimum** par groupe. Si le nombre de points contenu dans un cluster est inférieur à cette valeur, le cluster sera éliminé.

La résolution du nuage de point et l'épaisseur des tranches horizontales lors de la création des clusters sont à tenir compte lors de la définition de ce paramètre. Si la résolution du nuage de points est grossière et si la taille des tranches est fine, il faut s'attendre que le nombre de points par cluster sera assez faible dès le départ.

Configuration (OE_St	tepFilterClustersByS	i 8 S
Nombre de points minim	num dans un duster	4 🌻 pts
	ОК	Cancel

Aggrégation des clusters en billons

L'étape OE_StepDetectSection07 est issue du plugin onfensamv2 (onfensamv2 / Aggrégation verticale de clusters en billon)

Cette étape effectue une aggrégation verticale des groupes de points en billons. Un **Seuil de distance vertical** est utilisé pour la comparaison des groupes de points en pair. S'il y a intersection verticale des boîtes englobantes des clusters sur cette distance, ceux-ci seront aggrégés. Il y a arrêt d'aggrégation lors d'une rupture verticale au niveau du nuage de points. La présence d'occlusions ou d'une branche sont des causes communes.

Configuration (OE_StepDetectSection07 (94))		8	23
Distance en z (en + et en -) maximum entre deux groupes de points à comparer	10.00	<u>*</u>	cm
ОК		Cance	: -

Résultat de l'étape d'aggrégation:

Chaque couleur représente ici un billon.

Filtrage des billons

L'étape OE_StepFilterGroupsByGroupsNumber est issue du plugin onfensamv2 (onfensamv2 / Filtrage de groupes niv.1 / nb. de groupes niv.2)

Cette étape générique permet de retirer les groupes (ici les billons) possédant un nombre insuffisant de sous-groupes (ici les clusters). Les groupes de niveau 1 (billons) sont éliminés s'ils possèdent un nombre inférieur au **Nombre minimal de groupe de niveau 2** requis. Cette étape permet de retirer la plupart des petites branches et faux billons.

Configuration (OE_StepFilterGroupsByGroupsNumber (95))	8	23
Nombre de groupes minimum de niveau 2 dans un groupe de niveau 1	🔷 gro	upes
OK	Cano	el

Résultat de l'étape de filtrage des billons:

Fusion des billons parallèles

L'étape OE_StepMergeNeighbourSections04 est issue du plugin onfensamv2 (onfensamv2 / Fusion de billons parallèles)

Cette étape permet de fusionner les billons parallèles. Dans le cas d'occlusion par exemple, certaines branches peuvent être coupées, ce qui peut créer deux billons côte à côte qui devraient ne faire qu'un:

En premier lieu, les clusters contenus dans chacun des billons sont recréés selon une certaine épaisseur (en Z). Par la suite, les billons appartenant au même arbre sont aggrégés. L'outil utilise les paramètres suivants:

• La Distance de recherche de voisinnage est un paramètre d'optimisation de calcul.

- La **Distance maximum en XY entre les barycentres des clusters**. Si la distance horizontale entre les barycentres des clusters comparés est supérieure à ce paramètre, les billons ne seront pas fusionnés.
- La **Distance maximum en Z entre les barycentres des clusters**. Si la distance verticale entre les barycentres des clusters comparés est supérieure à ce paramètre, les billons ne seront pas fusionnés.
- Le Facteur d'accroissement maximal permet à ce que la fusion ne crée pas un éloignement trop important entre le nouveau barycentre et les points du cluster. Un facteur d'accroissement de 2 signifit donc que la distance entre le nouveau barycentre et les points du cluster peut doublé.

Epaisseur (en Z) des dusters :	10.00	* *	cm
Distance de recherche de voisinage :	10.00	*	m
Distance XY maximum entre barycentres de clusters de billons à fusionner :	50.00	*	cm
Distance Z maximum entre barycentres de clusters de billons à fusionner :	20.00	-	cm
Facteur d'accroissement maximal des distances XY entre barycentres de dusters de billons à fusionner' :	1.50	-	fois

Fusion de billons alignés

L'étape OE_StepMergeEndToEndSections04 est issue du plugin onfensamv2 (onfensamv2 / Fusion de billons alignés)

Cette étape permet de fusionner les billons alignés en direction. L'étape fonctionne de la manière suivante (voir également le schéma explicatif ci-bas):

- Les clusters sont regréés pour chaque billon selon l' Épaisseur des groupes en Z.
- Les billons sont ensuite comparés en pair. Si la distance entre deux billons est inférieure à la **Distance maximale**, les billons peuvent être fusionnés.
- Des lignes imaginaires rejoingnant les barycentres des clusters des billons sont tracées. Le Nombre de barycentres à considérer doit être spécifié.
- La distance maximale entre la ligne et l'extrémité du premier billon est calculée (maxDist). La distance entre la ligne du premier billon et celle du deuxième billon ne doit pas dépasser MaxDist * un Facteur multiplicatif.
- On doit également indiquer une valeur de Chevauchement toléré en Z.

Epaisseur des groupes en Z :	10.00	÷ (cm
Distance maximale entre extremités de billons à fusionner :	1.00		m
Nombre de barycentres a considerer aux extremites :	10	*	
Facteur multiplicatif de maxDist :	2	*	
Chevauchement toléré en Z :	20	÷.	cm

Schéma explicatif:

Pas de fusion

Résultat de la fusion:

On peut remarqué un exemple de chevauchement en Z sur l'image de gauche.

Ajout des coordonnées

L'étape OE_StepSetFootCoordinatesVertically est issue du plugin onfensamv2 (onfensamv2 / Ajout d'une coordonnée de base / billon // MNT)

Cette étape necessite deux modèles d'entrée: le Modèle Numérique de Terrain et les Billons fusionnées!

Nom des résultats	Description	Etape	Tour 1 +	
 MNT (Raster) Modèle Numérique de terrain Modèle Numérique de Surface Modèle Numérique de Hauteur Billons Billons Fusionnées 	MNT (Raster) Modèle Numérique de terrain Modèle Numérique de Surface Modèle Numérique de Hauteur Billons Billons Fusionnées	OE_StepExtr OE_StepExtr OE_StepExtr OE_StepMer	Nom des résultats MNT (Raster) Modèle Numérique de terrain Billons Billons Fusionnées Sortie Sélection Entrée	Etape OE_StepExtractSoil03 (120) OE_StepMergeEndToEndSections04 (1

Aucun paramètre n'est requis. Cette étape permet d'associer une position aux billons en projetant le cluster le plus bas sur le MNT.

Ajustement et filtrage de cylindres

L'étape OE_StepFitAndFilterCylindersInSections est issue du plugin onfensamv2 (onfensamv2 / Ajustement/Filtrage des cylindres / billon)

Cette étape effectue l'ajustement de cylindres sur les billons ainsi qu'une filtration de ceux-ci selon la qualité de l'ajustement. Les **Rayon minimum** et **Rayon maximum** sont spécifiés afin de limiter l'ajustement de cylindres sur des arbres trop petits ou trop grands. La qualité de l'ajustement est ensuite évaluée selon l'*Erreur absolue* et/ou l'*Erreur relative*. On peut également filtrer les cyclindres selon la verticalité de ceux-ci, un **Angle maximal depuis le zénith** est alors spécifié.

Rayon minimum :	2.00	cm
Rayon maximum :	80.00	cm
	Filtrer les cylindres sur l'erreur absolue	
Erreur maximum :	4.00	cm
	Filtrer les cylindres sur l'erreur relative	
Erreur maximum relative au diamètre :	30.00	%
	Filtrer les cylindres sur leur verticalité	
Angle maximal à la verticale (depuis de zénith) :	30.00	•

Résultat de l'ajustement de cylindres:

Calcul des diamètres des cylindres

L'étape OE_StepExtractDiametersFromCylinders est issue du plugin onfensamv2 (onfensamv2 / Calcul d'un diamètre moyen des cylindres / billon)

Cette étape permet de calculer le diamètre à hauteur de poitrine (DHP) des arbres. Pour ce faire, un cercle est ajusté sur un cylindre précédemment créé. Une **Hauteur minimale** ainsi qu'une **Hauteur maximale** d'évaluation sont spécfiées. Les rayons des cercles sont calculés entre ces deux valeurs pour calculer une regression. La valeur à **Hauteur de référence** (généralement 1.30 mètres) est alors interpolée ce cette regression. La **Décroissance métrique maximale** permet de s'assurer qu'aucun cylindre aberrant ne sera utilisé dans le calcul. Un **Nombre de cylindres minimum pour ajuster un cercle** est également spécifié.

Hauteur de référence :	1.30	🚖 m
Hauteur minimale d'évaluation :	1.00	🔹 m
Hauteur maximale d'évaluation :	1.60	🚖 m
Décroissance métrique maximale :	5.00	🚖 cm
Nombre de cylindres minimum pour ajuster un cercle :	3	*

Visualisation des résultats

Pour afficher les cercles ajustés à l'écran, il suffit d'activer les résultats dans les gestionnaires d'étape et de modèle.

e de cape						8
Nom		4	Progression	Temps / Afficher	Debu	1
		Billons Fusionnées	100%			
		OE_StepSetFootCoordinatesVertically (98)	100%	0h:0m:0s:20ms	0	
		Billons Fusionnées (COPY)	100%			
		 OE_StepFitAndFilterCylindersInSections (99) 	100%	0h:0m:0s:70ms	0	
		Billons Fusionnées (COPY)	100%			
		 OE_StepExtractDiametersFromCylinders (100) 	100%	0h:0m:0s:20ms	0	ľ
		Billons Fusionnées (COPY)	100%			
		Attributs/Items d'un groupe	100%	0h:0m:0s:430ms	0	
stionnaire de modèle Billons Fusionnées (COPY) (OE_S	tepExtra	actDiametersFromCylinders (100))			•	6
estionnaire de modèle Billons Fusionnées (COPY) (OE_S	tepExtra	actDiametersFromCylinders (100))			•	5
estionnaire de modèle Billons Fusionnées (COPY) (OE_S Nom	itepExtra	actDiametersFromCylinders (100))			•	5
estionnaire de modèle Billons Fusionnées (COPY) (OE_S Nom Billons Fusionnées Billon (Gra)	itepExtra	actDiametersFromCylinders (100))			•	5
estionnaire de modèle Billons Fusionnées (COPY) (OE_S Nom Billons Fusionnées Billon (Grp) Cluster (Grp)	itepExtra	actDiametersFromCylinders (100))			•	5
estionnaire de modèle Billons Fusionnées (COPY) (OE_S Nom Billons Fusionnées Billon (Grp) Cluster (Grp) Points	itepExtra 1	actDiametersFromCylinders (100))			•	5
estionnaire de modèle Billons Fusionnées (COPY) (OE_S Nom Billons Fusionnées Billon (Grp) Cluster (Grp) Points Barvcentre	itepExtra	actDiametersFromCylinders (100))			•	5
estionnaire de modèle Billons Fusionnées (COPY) (OE_S Nom Billons Fusionnées Billon (Grp) Cluster (Grp) Points Barycentre Cvlindre	itepExtra	actDiametersFromCylinders (100))			•	5
estionnaire de modèle Billons Fusionnées (COPY) (OE_S Nom Billons Fusionnées Billon (Grp) Cluster (Grp) Points Barycentre Cylindre Coordonnée MNT	itepExtra	actDiametersFromCylinders (100))			•	5

Un simple clic droit sur <u>Diamètre à 1.30</u> permet de changer la couleur des cercles.

Pour afficher à l'écran les attributs, activez 🕦 Information ItemDrawable dans l'onglet Action et cliquez sur l'objet désiré.

Export des attributs

L'étape PB_CSVExporter est issue du plugin base (base / Exporters / Export d'attributs (csv))

Sélectionnez d'abord le modèle d'entrée.

iom des resultats	Description	Etape	Tour 1		
Résultat	Résultat				
Billons Fusionr	ées Billons Fusionné	es OE_StepExtractDiametersFromCylinders	Nom des résultats Etape		
			▲ Résultat		
			Billons Fusionnées OE_StepExtractDiametersFrom	Cylinders (10))
			Sortie de OE_StepExtractDiametersFromCylinders (100)	Selection	Entrée
			Billons Fusionnées	[T2]	Comment
			Billion (Grp)		Groupe
			Points		Item
			Barvcentre		Item
			Cylindre		Item
			Coordonnée MNT		Item
			Diamètre à 1.30m	V	Item

Glissez ensuite les attributs désirés dans la fenêtre de droite.

Nom		Туре		ID	Centre X		
4 D	iamètre à 1.30m		1				
	ID	SIZE_T	1				
	Nom	STRING					
	Centre X	FLOAT					
	Centre Y	FLOAT					
	Centre Z	FLOAT					
	Rayon du cercle	FLOAT					
	Erreur d'ajustement du c	ercle FLOAT					
	Ajouter tous						

Spécifiez finalement l'emplacement et le nom du fichier csv.

Computree_64br	ts ► HowTo ► output	▼ + _j	Rechercher dans :	output	
)rganiser 🔻 🛛 Nouveau dossie	r			•	0
🔶 Favoris	Nom	Modifié le	Туре	Taille	
📃 Bureau	HT5_export_1_Billon (Grp)	2014-12-11 10:15	Document texte		33 I
🖳 Emplacements récents 🛛 😑	HT5_export_1_Log (Grp)	2014-12-03 09:57	Document texte		33
🚺 Téléchargements	HT5_export_2_Cluster (Grp)	2014-12-11 10:15	Document texte	8	384
 Bibliothèques Documents Images Musique 					
Vidéos +	•	III			
Nom du fichier : HT5_export					
Type : Fichier tyt (* t	pxt)				

Si vous utilisez un arbre d'étape préfait, faites un clic droit sur l'étape <u>Attributs/Items d'un groupe</u> puis sélectionnez <u>Config. résultats</u> <u>d'entrée</u> pour sélectionner les attributs et <u>Config. paramètres</u> pour spécifier le nom du fichier.

¹ Plugin Base.

Retour à la liste des How Tos

Fi	les
	103

Actions_FR.JPG	21.8 KB	12/02/2014	Delugre Audrey
cylinders.jpg	30 KB	12/02/2014	Delugre Audrey
detect_section_FR.JPG	21.1 KB	12/02/2014	Delugre Audrey
extract_diameter_FR.JPG	26.9 KB	12/02/2014	Delugre Audrey
filter_cluster_by_size_FR.JPG	17.5 KB	12/02/2014	Delugre Audrey
filter_group_FR.JPG	20.5 KB	12/02/2014	Delugre Audrey
fit_cylinders_FR.JPG	36.8 KB	12/02/2014	Delugre Audrey
horizontal_clustering_FR.JPG	21.6 KB	12/02/2014	Delugre Audrey
clusters.JPG	81.8 KB	12/04/2014	Delugre Audrey
filtered_logs.JPG	79.8 KB	12/04/2014	Delugre Audrey
logs.JPG	105 KB	12/04/2014	Delugre Audrey
merge_neighbor_FR.JPG	35.9 KB	12/08/2014	Delugre Audrey
set_coordinates_input_FR.JPG	71.4 KB	12/08/2014	Delugre Audrey
density_FR.JPG	18.4 KB	12/09/2014	Delugre Audrey
horizontal_clustering_input_FR.JPG	57.9 KB	12/10/2014	Delugre Audrey
parallel_log.jpg	35.5 KB	12/10/2014	Delugre Audrey
merge_end_FR.JPG	28.1 KB	12/11/2014	Delugre Audrey
merge_align.jpg	28.4 KB	12/11/2014	Delugre Audrey
schema_FR.JPG	32.6 KB	12/11/2014	Delugre Audrey
cylinders.JPG	63.1 KB	12/11/2014	Delugre Audrey
DHP.JPG	83.4 KB	12/11/2014	Delugre Audrey
visualization_FR.JPG	65.4 KB	12/11/2014	Delugre Audrey

info.JPG	7.85 KB	12/11/2014	Delugre Audrey
Export_attributes_2_FR.JPG	35.3 KB	12/11/2014	Delugre Audrey
Export_attributes_1_FR.JPG	68.3 KB	12/11/2014	Delugre Audrey
Export_attributes_3_FR.JPG	65 KB	12/11/2014	Delugre Audrey